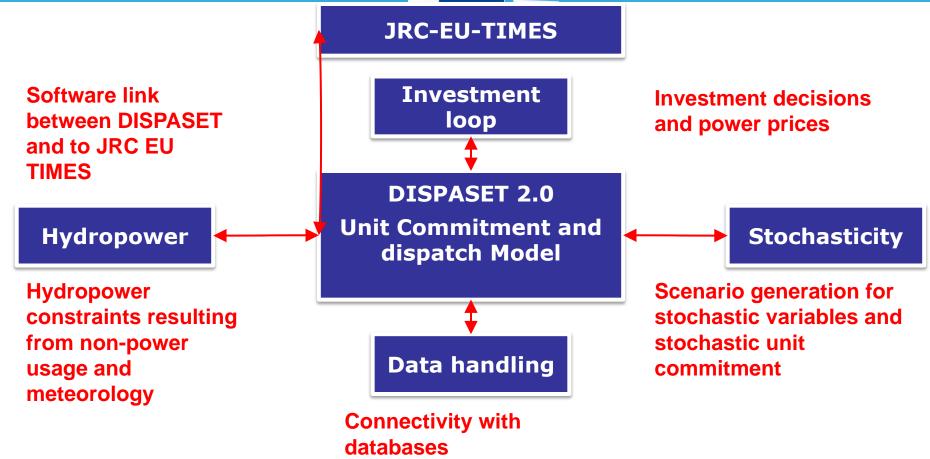


Review of the meteorological data treatment into RES-E integration studies

Dr. Iratxe González-Aparicio Dr. Andreas Zucker

2nd Open Energy Modelling Workshop, 13th - 14th Berlin



Outline

- Dispa-SET 2.1: European Unit Commitment and Dispatch Power Model
- Critical review of studies using meteorological data for RES-S studies
- Considerations when using meteorological data
- Datasets used for the Dispa-SET 2.1 and other related-studies

DISPASET 2.0 and planned extensions

Hidalgo-Gonzalez I, Quoilin S, Zucker A. Dispa-SET 2.0 (2014). Unit Commitment and power dispatch model, Publication Office of the European Union JRC93780. ISBN 978-92-79-44690-0 (pdf)

I. Gonzalez-Aparicio & A. Zucker, 2015. Review of meteorological data treatment into RES-E integration studies (2015) (under revision, published as JRC-Report)

F. Monforti-Ferrario, M.M. Miglietta, T Huld, R Lacal-Arantegui, I Gonzalez-Aparicio, G. Fulli. Spatial and time complementarity of future wind energy production patterns over Europe: main features and consequences for transmission grids. 3rd International Conference Energy & Meteorology, Weather & Climate for the energy industry, 22-26 June 2015, Boulder

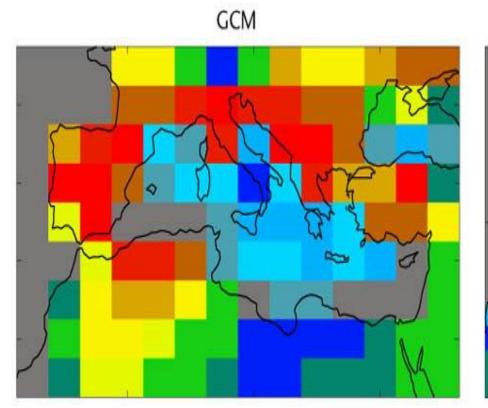
Gonzalez-Aparicio, I. & Zucker, A. 2015. **Impact of wind power uncertainty forecasting on the market integration of wind energy in Spain**. Applied Energy Journal, under revision

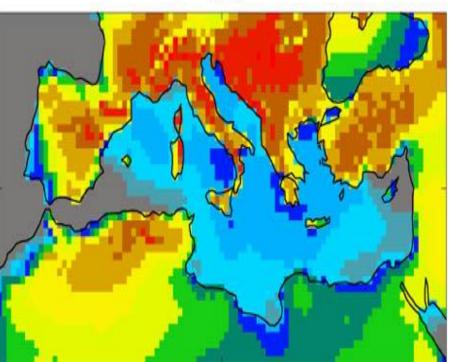
Review of existing studies

STUDY	Year of publication	Approach	Horiz. & and temp resolution	Time frame of meteorological data used	Final purpose
DENA II	2010	NWP model: EU – COSMO	6x 6 km. 1-hourly → Statistical downscaling to 15- minutely		Integration of RES in the German power supply for 2015-2020
North Sea Grid	2012	Time series ?	?	2006	Assumptions for 2030, wind power scenarios to improve current and future infrastructure development in the North Sea Area
EdF	2015	Reanalysis: ERA-Interim ERA-40	50 x 50 km 3-hourly	31 years:	Meteorological data are used as input for the CONTINENTAL model in order to assess the flexibility into electricity system planning
NREL	2013	NWP model: WRF	2 x 2 km 10-minutely → biased and downscaling to 1- minutely by statistics		Investigate the impact of up to 35% energy penetration of wind, PV and concentration solar power on the power system.
NREL	2013	Reanalysis: GFS	6x6 km 1-hourly	1979- present	Development of wind resource and wind output datasets
Rassmunsen et al. , Heide et al.	2011 & 2010	Private source (WEPROG) & Reanalysis: NCAR/NCEP	&50 x 50 km & 47 x 48 km 1-hourly	2000-2007	Optimal combination of storage and balancing in a 100% renewable European Power System. Seasonal optimal mix of wind and solar power in a future, highly renewable Europe
Budischack et al.	2013	Observations: 135 meteorological stations	51-hourly	1999-2002	Cost-minimized combinations of wind power, solar power and electromechanical power, powering the grid up to 99.9% of the time.
Univ. Cologne	2015	Time series ?	?	Clusters of 32 type of days in a year	Modelling flexibility needs in the European power system
Gaetani et al.	2014	Projections: GCM mode ECHAM5-HAM	IT63 – 180 x 180 km approx.	Difference between 2030-2000	Assess the near future change in productivity of photovoltaic energy in Europe and Africa

- **The GCM, RCM and the NWP** are able to simulate the global/regional climate system and the atmospheric processes on different spatial and time scales, respectively
- **Reanalysis** of past weather data presents a clear picture of past weather, independent of the many varieties of instruments used to take measurements over the years. Through a variety of methods, observations from various instruments are added together onto a regularly spaced grid of data.

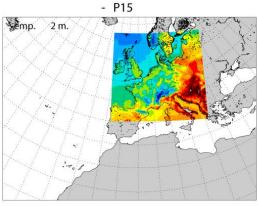
- Horizontal and temporal resolution of NWP or RCM
- Size: Dealing with large datasets: select the domain, and only the necessary data
- Format: NetCDF, GRIB, UGRID, HDF5
- Post-processing tools: IDL/GDL, R-software, CDO-NCO, Ncview/Panoply, "Matlab"

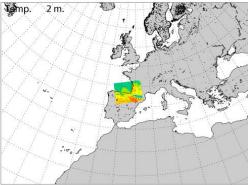


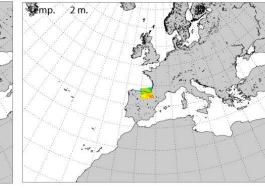

Horizontal Resolution GCM, RCM

100 km x 100 km

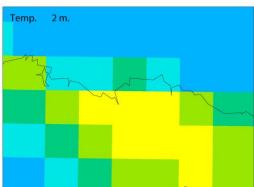
50 km x 50 km

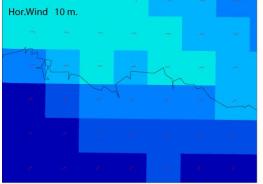


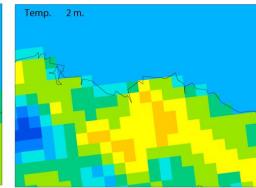

RCM

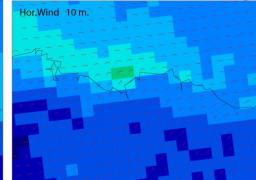

IPCC, 2007

Horizontal **Resolution NWP**

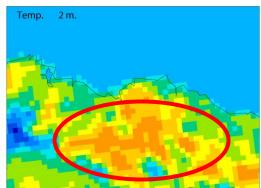


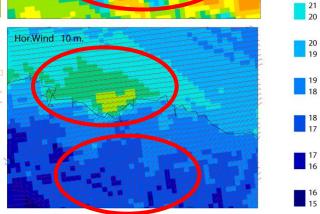






-B02


8


5

3

4

10 9

Gonzalez-Aparicio et al. 2010

Mon 3 Aug 2009 00Z +12h

Temp. 29

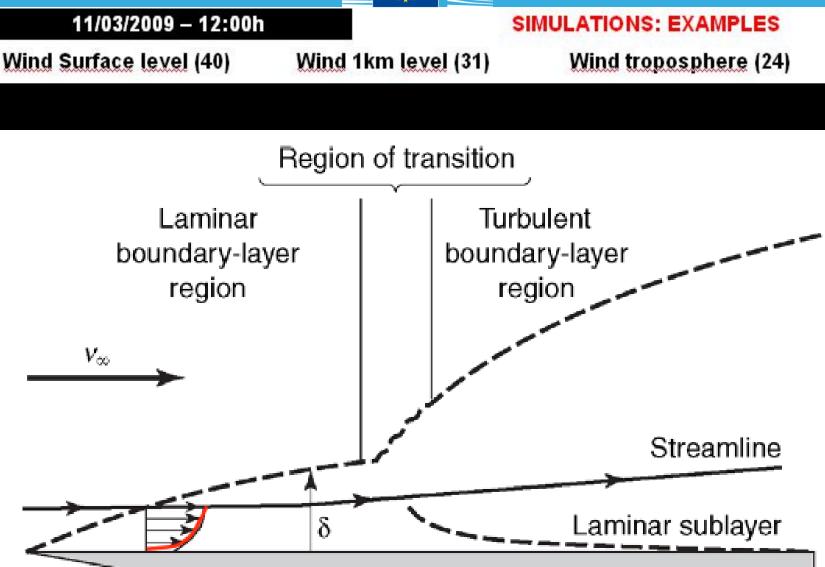
28

26

25

23

21


Hor.Wind

 15
 14
 13
 12
 11

 14
 13
 12
 11
 10

Model levels, NWP

Datasets for Dispa-SET 2.1

ECMWF

Wind EU-28 energy productions

- Global Domain
- Period: 2012-2014
- Hourly frequency
- 100m w int. two nearest m.l.
- Horizontal resolution 16 x 16 km²

NASA

MERRA data holdings

- Global Domain
- Period: 1961-present
- Hourly frequency <- int. from 3-h
- 100m w int. two nearest m.l.
- Horizontal resolution 70 x 70 km² int. up to 12 km

ERA-Interim

- European Domain
- Period: 1959-present
- 3-Hourly frequency
- 10m w + other meteo var.
- Horizontal resolution 50 x 50 km²

CORDEX

Ensemble RCM driven by GCMs

- Several domains \rightarrow EU-28
- Period: 1961-2100
- 3-Hourly frequency
- 10m + other meteo var.
- Horizontal resolution 12 x 12 km²

Review of climate datasets and sources \rightarrow Publicly available in:

I. Gonzalez-Aparicio & A. Zucker, 2015 (under review, published as JRC-Report by April)

Thank you for your attention

Iratxe González-Aparicio

E-mail: <u>iratxe.gonzalez-aparicio@ec.europa.eu</u> Tlph: +31 224 56 5251

