|
|
| (4 intermediate revisions by one user not shown) |
| Line 1: |
Line 1: |
| | {{Model | | {{Model |
| − | |Full_Model_Name=Zero-emissions Energy Networks garden | + | |Full_Model_Name=Zero-emissions Energy Networks |
| | |Acronym=ZEN-garden | | |Acronym=ZEN-garden |
| | |author_institution=ETH Zürich | | |author_institution=ETH Zürich |
| − | |authors=Jacob Mannhardt, Alissa Ganter, Lukas Kunz, Lukas Schmidt-Engelbertz, Janis Fluri, Vinzenz Muser, Johannes Burger, Francesco De Marco, Christoph Funke, Nour Boulos, Giovanni Sansavini | + | |authors=Jacob Mannhardt, Alissa Ganter, Lukas Kunz, Lukas Schmidt-Engelbertz, Janis Fluri, Vinzenz Muser, Johannes Burger, Francesco De Marco, Christoph Funke, Nour Boulos, Paolo Gabrielli, Giovanni Sansavini |
| | |contact_persons=ZEN-garden team | | |contact_persons=ZEN-garden team |
| | |contact_email=zen-garden@ethz.ch | | |contact_email=zen-garden@ethz.ch |
| | |website=https://linktr.ee/zengarden_ | | |website=https://linktr.ee/zengarden_ |
| | |logo=Zen garden logo text.png | | |logo=Zen garden logo text.png |
| − | |text_description=ZEN-garden is an open-source linear optimization model of long-term energy system transition pathways. ZEN-garden, with a modular and flexible design, can be used to optimize different types of energy systems, value chains, or other network-based systems. | + | |text_description=ZEN-garden is an open-source linear optimization model of long-term energy system transition pathways. ZEN-garden, with a modular and flexible design, can be used to optimize different types of energy systems, value chains, or other network-based systems. ZEN-garden particularly provides a detailed description of transition pathways with, among other features, cumulative or annual carbon limits, capacity expansion constraints, and construction years. Data handling is user-oriented with features covering unit consistency, scaling, and parallelizable scenario analysis. Results output by ZEN-garden are investigated on an intuitive and flexible visualization platform. |
| | |Primary outputs=Energy systems transition pathways | | |Primary outputs=Energy systems transition pathways |
| | |User documentation=https://zen-garden.readthedocs.io/en/latest/ | | |User documentation=https://zen-garden.readthedocs.io/en/latest/ |
| Line 20: |
Line 20: |
| | |modelling_software=Python | | |modelling_software=Python |
| | |GUI=No | | |GUI=No |
| − | |model_class=Framework, | + | |model_class=Framework, |
| − | |sectors=All, | + | |sectors=All, |
| | |technologies=Renewables, Conventional Generation, CHP | | |technologies=Renewables, Conventional Generation, CHP |
| | |Demand sectors=Households, Industry, Transport, Commercial sector, Other | | |Demand sectors=Households, Industry, Transport, Commercial sector, Other |
| Line 46: |
Line 46: |
| | |citation_references=Mannhardt, J., Ganter, A., Burger, J., De Marco, F., Kunz, L., Schmidt-Engelbertz, L., Gabrielli, P., & Sansavini, G. (2025). ZEN-garden: Optimizing energy transition pathways with user-oriented data handling. SoftwareX, 29, 102059. DOI:10.1016/j.softx.2025.102059 | | |citation_references=Mannhardt, J., Ganter, A., Burger, J., De Marco, F., Kunz, L., Schmidt-Engelbertz, L., Gabrielli, P., & Sansavini, G. (2025). ZEN-garden: Optimizing energy transition pathways with user-oriented data handling. SoftwareX, 29, 102059. DOI:10.1016/j.softx.2025.102059 |
| | |citation_doi=https://doi.org/10.1016/j.softx.2025.102059 | | |citation_doi=https://doi.org/10.1016/j.softx.2025.102059 |
| | + | |report_references=Mannhardt, J., Gabrielli, P., & Sansavini, G. (2024). Understanding the vicious cycle of myopic foresight and constrained technology deployment in transforming the European energy system. iScience, 27(12), 111369. https://doi.org/10.1016/j.isci.2024.111369 |
| | + | |
| | + | Mannhardt, J., Gabrielli, P., & Sansavini, G. (2023). Collaborative and selfish mitigation strategies to tackle energy scarcity: The case of the European gas crisis. iScience, 26(5), 106750. https://doi.org/10.1016/j.isci.2023.106750 |
| | + | |
| | + | Ganter, A., Lonergan, K. E., Büchi, H. M., & Sansavini, G. (2024). Shifting to low-carbon hydrogen production supports job creation but does not guarantee a just transition. One Earth, 7(11), 1981–1993. https://doi.org/10.1016/j.oneear.2024.10.009 |
| | + | |
| | + | Ganter, A., Gabrielli, P., & Sansavini, G. (2024). Near-term infrastructure rollout and investment strategies for net-zero hydrogen supply chains. Renewable and Sustainable Energy Reviews, 194, 114314. https://doi.org/10.1016/j.rser.2024.114314 |
| | |Model input file format=No | | |Model input file format=No |
| | |Model file format=No | | |Model file format=No |
| | |Model output file format=No | | |Model output file format=No |
| | }} | | }} |
Mannhardt, J., Ganter, A., Burger, J., De Marco, F., Kunz, L., Schmidt-Engelbertz, L., Gabrielli, P., & Sansavini, G. (2025). ZEN-garden: Optimizing energy transition pathways with user-oriented data handling. SoftwareX, 29, 102059. DOI:10.1016/j.softx.2025.102059
https://dx.doi.org/https://doi.org/10.1016/j.softx.2025.102059
Mannhardt, J., Gabrielli, P., & Sansavini, G. (2024). Understanding the vicious cycle of myopic foresight and constrained technology deployment in transforming the European energy system. iScience, 27(12), 111369. https://doi.org/10.1016/j.isci.2024.111369
Mannhardt, J., Gabrielli, P., & Sansavini, G. (2023). Collaborative and selfish mitigation strategies to tackle energy scarcity: The case of the European gas crisis. iScience, 26(5), 106750. https://doi.org/10.1016/j.isci.2023.106750
Ganter, A., Lonergan, K. E., Büchi, H. M., & Sansavini, G. (2024). Shifting to low-carbon hydrogen production supports job creation but does not guarantee a just transition. One Earth, 7(11), 1981–1993. https://doi.org/10.1016/j.oneear.2024.10.009
Ganter, A., Gabrielli, P., & Sansavini, G. (2024). Near-term infrastructure rollout and investment strategies for net-zero hydrogen supply chains. Renewable and Sustainable Energy Reviews, 194, 114314. https://doi.org/10.1016/j.rser.2024.114314