|
|
(78 intermediate revisions by one user not shown) |
Line 3: |
Line 3: |
| |Acronym=Maon | | |Acronym=Maon |
| |author_institution=Maon GmbH | | |author_institution=Maon GmbH |
− | |authors=Mihail Ketov, Fabian Pfannes, Huangluolun Zhou, Nicolai Schmid, Dariush Wahdany, Yash Patel, Kaan Gecü, Ömer Bilgin, Esmanur Eryilmaz, Ali Baran Gündüz, Marios Morfopoulos, Sangeetha Kadarkarai, Mark Schäfer, Kai Strunz, Albert Moser | + | |authors=Mihail Ketov, Fabian Breitkreutz, Yash Patel, Sangeetha Kadarkarai, Hajar Mouchrik, Nicolai Schmid, Dariush Wahdany, Kaan Gecü, Ömer Bilgin, Ali Baran Gündüz, Anton Kucherenko, Söhnke Hartmann, Kai Strunz, Albert Moser |
| |contact_persons=Dr. Mihail Ketov | | |contact_persons=Dr. Mihail Ketov |
| |contact_email=info@maon.eu | | |contact_email=info@maon.eu |
− | |website=https://cloud.maon.eu/handbook | + | |website=https://maon.eu |
− | |source_download=https://apis.cloud.maon.eu/
| + | |
| |logo=Maon Colors Frontpage Header.png | | |logo=Maon Colors Frontpage Header.png |
− | |text_description=Maon is a fundamental simulation environment for electricity, gas and emission market analysis. The model simulates the annual coupled dispatch of all supply and demand for 8760 hours in whole Europe. | + | |text_description=Maon is a market simulation for fundamental electricity, gas, and emission market analysis. It forecasts the facility-level quarter-hourly dispatch of all supply and demand across a continent. Further, it can predict capacities and uncertainties of generators, interconnectors, storages, and consumers. |
| | | |
− | Web browsers provide access to the data management, simulation and analysis environment. It enables high-speed, high-resolution and large-scale market forecasts. Runs can be efficiently parameterized, carried out by one click and directly visually analyzed for historical and future scenarios. | + | Web browsers provide access to the data management, simulation, and analysis environment. It enables high-speed, high-resolution, and large-scale foresights. Scenarios can be parameterized by multiple users at the same time, calculated by one click, and collaboratively visually analyzed. |
| | | |
− | Users get support by various parameterization tools, comprehensive data quality checks and interactive data visualizations. Results like market price, unit-wise dispatch and exchange are prepared for social welfare analysis, power-flow simulations and techno-economic assessments. | + | Users get support by work-leveraging parameterization tools, comprehensive quality checks, and interactive visualizations. Maon provides not only results like prices, dispatches, and capacities, but also capture rates, costs, price distributions, revenues, utilizations, and many other parameters. |
| |Support=commercial | | |Support=commercial |
− | |User documentation=https://cloud.maon.eu/handbook | + | |User documentation=https://docs.cloud.maon.eu/ |
− | |Code documentation=https://cloud.maon.eu/handbook | + | |Code documentation=https://docs.cloud.maon.eu/ |
| |Source of funding=private | | |Source of funding=private |
| |Number of developers=10 | | |Number of developers=10 |
Line 24: |
Line 23: |
| |data_availability=all | | |data_availability=all |
| |open_future=No | | |open_future=No |
− | |modelling_software=C++, OpenMPI, CPLEX | + | |modelling_software=C++ |
− | |processing_software=Kubernetes, Docker, Ansible, Ceph, MinIO, MongoDB, Preact, Node.js, GraphQL, Python, WebAssembly, cURL | + | |processing_software=Ansible, Ceph, cURL, Docker, GraphQL, Kubernetes, MinIO, MongoDB, Node.js, Preact, Python, TypeScript, WebAssembly |
− | |External optimizer=CPLEX
| + | |
| |Additional software=Only browser and internet connection required | | |Additional software=Only browser and internet connection required |
| |GUI=Yes | | |GUI=Yes |
Line 39: |
Line 37: |
| |Transfer (Electricity)=Distribution, Transmission | | |Transfer (Electricity)=Distribution, Transmission |
| |Transfer (Gas)=Distribution, Transmission | | |Transfer (Gas)=Distribution, Transmission |
| + | |Transfer (Heat)=Distribution, Transmission |
| |Storage (Electricity)=Battery, CAES, Chemical, Kinetic, PHS | | |Storage (Electricity)=Battery, CAES, Chemical, Kinetic, PHS |
| |Storage (Gas)=Yes | | |Storage (Gas)=Yes |
Line 44: |
Line 43: |
| |decisions=dispatch, investment | | |decisions=dispatch, investment |
| |Changes in efficiency=Individual efficiency per operating point | | |Changes in efficiency=Individual efficiency per operating point |
− | |georegions=ENTSO-E members | + | |georegions=Europe, North Africa, Middle East |
| |georesolution=Individual power stations | | |georesolution=Individual power stations |
| |timeresolution=Hour | | |timeresolution=Hour |
Line 50: |
Line 49: |
| |Observation period=Less than one month, Less than one year, More than one year | | |Observation period=Less than one month, Less than one year, More than one year |
| |math_modeltype=Optimization, Simulation, Other, Agent-based | | |math_modeltype=Optimization, Simulation, Other, Agent-based |
− | |math_objective=Maximization of social welfare at electricity spot, frequency reserve, natural gas and emission markets in Europe | + | |math_objective=Minimization of dispatch and investment cost |
| |deterministic=Monte Carlo, preprocessing or sensitivity | | |deterministic=Monte Carlo, preprocessing or sensitivity |
| |is_suited_for_many_scenarios=Yes | | |is_suited_for_many_scenarios=Yes |
Line 57: |
Line 56: |
| |computation_time_minutes=1000 | | |computation_time_minutes=1000 |
| |computation_time_hardware=high performance computing cluster | | |computation_time_hardware=high performance computing cluster |
− | |computation_time_comments=8760 coupled hours for ENTSO-E region includig renewable, thermal, hydro, battery, CHP, PtG, DSR, FBMC and on-off decision model | + | |computation_time_comments=dispatch for 8760 coupled hours in full European region with spot, FCR, aFRR, mFRR, emission, renewable, thermal, hydro, battery, CHP, PtG, DSR, FBMC, AHC, HVDC and on-off decision model, but without facility-wise aggregations |
− | |citation_references=Ketov, Mihail (2019). "Marktsimulationen unter Berücksichtigung der Strom-Wärme-Sektorenkopplung", Print Production, Aachener Beiträge zur Energieversorgung, volume 189, PhD thesis, RWTH Aachen University. | + | |citation_references=Maon GmbH, Documentation, https://docs.cloud.maon.eu. |
− | |Interfaces=https://apis.cloud.maon.eu/ and web browser interface | + | |report_references=https://maon.eu/publications |
| + | |Interfaces=Front-end at https://cloud.maon.eu and APIS at https://apis.cloud.maon.eu |
| |Model input file format=No | | |Model input file format=No |
| |Model file format=No | | |Model file format=No |
| |Model output file format=No | | |Model output file format=No |
| }} | | }} |