|
|
Line 1: |
Line 1: |
| {{Model | | {{Model |
− | |Full_Model_Name=Electricity Transhipment Model | + | |Full_Model_Name=Electricity Transshipment Model |
| |Acronym=ELTRAMOD | | |Acronym=ELTRAMOD |
− | |author_institution=Technische Universität Dresden (EE2) | + | |author_institution=Technische Universität Dresden (ee2) |
− | |authors=Dominik Möst, Theresa Ladwig | + | |authors=Dominik Möst, David Gunkel, Theresa Ladwig, Daniel Schubert, Hannes Hobbie, Christoph Zöphel, Steffi Misconel, Carl-Philipp Anke |
− | |contact_persons=Steffi Schreiber | + | |contact_persons=Dominik Möst |
− | |contact_email=steffi.schreiber@tu-dresden.de | + | |contact_email=dominik.moest@tu-dresden.de |
| |website=https://tu-dresden.de/bu/wirtschaft/ee2/forschung/modelle/eltramod | | |website=https://tu-dresden.de/bu/wirtschaft/ee2/forschung/modelle/eltramod |
| + | |text_description=ELTRAMOD is a fundamental bottom-up electricity market model incorporating the electricity markets of the EU-27 states, Norway, Switzerland and the Balkan region as well as the Net Transfer Capacities (NTC) between these countries. Each country is treated as one node with country-specific hourly time series of electricity demand and renewable feed-in. The country-specific wind and photovoltaic feed-in is characterised by the installed capacity and an hourly capacity factor. The capacity factors are calculated with the help of publically available time series of wind speed and solar radiation from 2009 and 2010. ELTRAMOD is a linear optimisation model which calculates the cost-minimal generation dispatch and investments in additional transmission lines and storage facilities. The set of conventional power plants consists of fossil fired, nuclear and hydro plants where different technological characteristics are implemented, such as efficiency, emission factors and availability. Daily prices for CO2 allowances, as well as daily wholesale fuel prices supplemented by country specific mark-ups are implemented in ELTRAMOD. The country- and technology-specific parameters and the temporal resolution of 8760 hours allow an in-depth analysis of various challenges of the future European electricity system. For example, the trade-off between network extension and storage investment as well as import and export flows of electricity in Europe can be analysed. |
| |open_source_licensed=No | | |open_source_licensed=No |
| |model_source_public=No | | |model_source_public=No |
− | |open_future=No | + | |data_availability=some |
| + | |open_future=Yes |
| + | |modelling_software=GAMS; CPLEX |
| |GUI=No | | |GUI=No |
− | |Storage (Gas)=No | + | |model_class=German and European Electricity Market, |
− | |Storage (Heat)=No | + | |sectors=Electricity including sector coupling (EVs, PtX) |
| + | |technologies=Renewables, Conventional Generation, CHP |
| + | |Demand sectors=Households, Industry, Transport, Commercial sector |
| + | |Energy carrier (Gas)=Natural gas, Hydrogen |
| + | |Energy carriers (Solid)=Biomass, Coal, Lignite, Uranium |
| + | |Energy carriers (Renewable)=Geothermal heat, Hydro, Sun, Wind |
| + | |Transfer (Electricity)=Transmission |
| + | |Storage (Electricity)=Battery, CAES, PHS |
| + | |Storage (Gas)=Yes |
| + | |Storage (Heat)=Yes |
| + | |Market models=European electricity market incl. carbon market (EU ETS) |
| + | |decisions=dispatch, investment |
| + | |georegions=EU-27 + Norway + Switzerland + United Kingdom + Balkan countries |
| + | |georesolution=NUTS0 - NUTS3 |
| + | |timeresolution=Hour |
| + | |network_coverage=transmission, net transfer capacities |
| + | |Observation period=More than one year |
| + | |math_modeltype=Optimization |
| + | |math_modeltype_shortdesc=Linear optimization model |
| + | |math_objective=Minimization of total system costs |
| + | |deterministic=Deterministic; Perfect foresight; Sensitivity analysis ; |
| |is_suited_for_many_scenarios=No | | |is_suited_for_many_scenarios=No |
| |montecarlo=No | | |montecarlo=No |
| |citation_references=Demand Side Management in Deutschland zur Systemintegration erneuerbarer Energien | | |citation_references=Demand Side Management in Deutschland zur Systemintegration erneuerbarer Energien |
| |citation_doi=urn:nbn:de:bsz:14-qucosa-236074 | | |citation_doi=urn:nbn:de:bsz:14-qucosa-236074 |
| + | |report_references=Schreiber, S., Zöphel, C., Möst, D., 2021. Optimal Energy Portfolios in the Electricity Sector: Trade-offs and Interplay between Different Flexibility Options, in: Möst, D., Schreiber, S., Herbst, A., Jakob, M., Martino, A., Poganietz, W.-R. (Eds.), The Future European Energy System - Renewable Energy, Flexibility Options and Technological Progress. Springer International Publishing. https://doi.org/10.1007/978-3-030-60914-6. |
| + | |
| + | Anke, C.-P.; Hobbie, H.; Schreiber, S.; Möst, D.: Coal phase-outs and carbon prices: Interactions between EU emission trading and national carbon mitigation policies. In: Energy Policy Vol. 144 (2020), Nr. 111647 |
| + | |
| + | Zöphel, Christoph; Schreiber, Steffi; Herbst, A.; Klinger, A-L; Manz, P.; Heitel, S.; Fermi, F.; Wyrwa, A.; Raczynski, M.; Reiter, U. D4.3 Report on cost optimal energy technology portfolios for system flexibility in the sectors heat, electricity and mobility. In: Report des REFLEX Projektes (2019) |
| + | |
| + | Energy System Analysis Agency (ESA²): Shaping our energy system - combining European modelling expertise, Brüssel, 2013. |
| + | |
| + | Gunkel, D.; Kunz, F.; Müller, T., von Selasinsky, A.; Möst, D.: Storage Investment or |
| + | Transmission Expansion: How to Facilitate Renewable Energy Integration in Europe?. |
| + | |
| + | Tagungsband VDE-Kongress Smart Grid - Intelligente Energieversorgung der Zukunft, 2012. |
| + | |
| + | Müller, T.: Influence of increasing renewable feed-in on the operation of conventional and |
| + | storage power plants. 1st KIC InnoEnergy Scientist Conference, Leuven, 2012. |
| + | |
| + | Müller, T.; Gunkel, D.; Möst, D.: Renewable curtailment and its impact on grid and storage |
| + | capacities in 2030, Enerday Conference, Dresden 2013. |
| + | |
| |Model input file format=No | | |Model input file format=No |
| |Model file format=No | | |Model file format=No |
| |Model output file format=No | | |Model output file format=No |
| }} | | }} |
Schreiber, S., Zöphel, C., Möst, D., 2021. Optimal Energy Portfolios in the Electricity Sector: Trade-offs and Interplay between Different Flexibility Options, in: Möst, D., Schreiber, S., Herbst, A., Jakob, M., Martino, A., Poganietz, W.-R. (Eds.), The Future European Energy System - Renewable Energy, Flexibility Options and Technological Progress. Springer International Publishing. https://doi.org/10.1007/978-3-030-60914-6.
Anke, C.-P.; Hobbie, H.; Schreiber, S.; Möst, D.: Coal phase-outs and carbon prices: Interactions between EU emission trading and national carbon mitigation policies. In: Energy Policy Vol. 144 (2020), Nr. 111647
Zöphel, Christoph; Schreiber, Steffi; Herbst, A.; Klinger, A-L; Manz, P.; Heitel, S.; Fermi, F.; Wyrwa, A.; Raczynski, M.; Reiter, U. D4.3 Report on cost optimal energy technology portfolios for system flexibility in the sectors heat, electricity and mobility. In: Report des REFLEX Projektes (2019)
Energy System Analysis Agency (ESA²): Shaping our energy system - combining European modelling expertise, Brüssel, 2013.
Gunkel, D.; Kunz, F.; Müller, T., von Selasinsky, A.; Möst, D.: Storage Investment or
Transmission Expansion: How to Facilitate Renewable Energy Integration in Europe?.
Tagungsband VDE-Kongress Smart Grid - Intelligente Energieversorgung der Zukunft, 2012.
Müller, T.: Influence of increasing renewable feed-in on the operation of conventional and
storage power plants. 1st KIC InnoEnergy Scientist Conference, Leuven, 2012.
Müller, T.; Gunkel, D.; Möst, D.: Renewable curtailment and its impact on grid and storage
capacities in 2030, Enerday Conference, Dresden 2013.