|
|
(One intermediate revision by one user not shown) |
Line 1: |
Line 1: |
| {{Model | | {{Model |
| |Full_Model_Name=Switch | | |Full_Model_Name=Switch |
− | |author_institution=University of Hawaii | + | |author_institution=Environmental Defense Fund |
| |authors=Matthias Fripp, Josiah Johnston, Rodrigo Henríquez, Benjamín Maluenda | | |authors=Matthias Fripp, Josiah Johnston, Rodrigo Henríquez, Benjamín Maluenda |
| |contact_persons=Matthias Fripp | | |contact_persons=Matthias Fripp |
− | |contact_email=mfripp@hawaii.edu | + | |contact_email=mfripp@edf.org |
| |website=http://switch-model.org | | |website=http://switch-model.org |
| |source_download=https://github.com/switch-model/switch | | |source_download=https://github.com/switch-model/switch |
| |text_description=Switch is a capacity-planning model for power systems with large shares of renewable energy, storage and/or demand response. It optimizes investment decisions for renewable and conventional generation, storage, hydro and other assets, based on how they would be used during a collection of sample days in many future years. The use of multiple investment periods and chronologically sequenced hours enables optimization and assessment of a long-term renewable transition based on a direct consideration of how these resources would be used hour-by-hour. The Switch platform is highly modular, allowing easy selection between prewritten components or addition of custom components as first-class elements in the model. | | |text_description=Switch is a capacity-planning model for power systems with large shares of renewable energy, storage and/or demand response. It optimizes investment decisions for renewable and conventional generation, storage, hydro and other assets, based on how they would be used during a collection of sample days in many future years. The use of multiple investment periods and chronologically sequenced hours enables optimization and assessment of a long-term renewable transition based on a direct consideration of how these resources would be used hour-by-hour. The Switch platform is highly modular, allowing easy selection between prewritten components or addition of custom components as first-class elements in the model. |
− | |Primary purpose=design and assessment of high-renewable power systems
| |
| |Primary outputs=optimal investment plans, hourly operational details, emissions, costs | | |Primary outputs=optimal investment plans, hourly operational details, emissions, costs |
| |Support=contact authors via http://switch-model.org | | |Support=contact authors via http://switch-model.org |
Line 26: |
Line 25: |
| |processing_software=Python, any user-selected software | | |processing_software=Python, any user-selected software |
| |External optimizer=glpk, cbc, cplex, gurobi, any Pyomo- (or AMPL-) compatible solver | | |External optimizer=glpk, cbc, cplex, gurobi, any Pyomo- (or AMPL-) compatible solver |
− | |Primary purpose=design and assessment of high-renewable power systems
| |
| |GUI=No | | |GUI=No |
| |model_class=Power system capacity expansion, energy system | | |model_class=Power system capacity expansion, energy system |
Line 55: |
Line 53: |
| |math_modeltype=Optimization | | |math_modeltype=Optimization |
| |math_modeltype_shortdesc=intertemporal mathematical optimization | | |math_modeltype_shortdesc=intertemporal mathematical optimization |
− | |is_suited_for_many_scenarios=No | + | |math_objective=total cost or consumer surplus, including environmental adders |
| + | |deterministic=stochastic treatment of hourly renewable variability; allocation of reserves for sub-hourly variability; scenarios or progressive hedging for uncertain annual weather or fuel or equipment costs |
| + | |is_suited_for_many_scenarios=Yes |
| |montecarlo=No | | |montecarlo=No |
| + | |computation_time_minutes=20 |
| + | |computation_time_hardware=single-threaded on 3.0 GHz Intel i7 CPU |
| + | |computation_time_comments=computation time is roughly cubic with the spatial and temporal resolution selected; users typically adjust resolution to achieve 2-10 min solution time in testing phases, 10-60 min solution time for final optimizations |
| + | |citation_references=J. Johnston, R. Henríquez, B. Maluenda and M. Fripp “Switch 2.0: a modern platform for planning high-renewable power systems,” Preprint, 2018. https://arxiv.org/abs/1804.05481 |
| + | |report_references=<h5>Overview</h5> |
| + | <ul> |
| + | <li>Josiah Johnston, Rodrigo Henriquez-Auba, Benjamín Maluenda and Matthias Fripp. [https://doi.org/10.1016/j.softx.2019.100251 "Switch 2.0: A modern platform for planning high-renewable power systems."] <em>SoftwareX</em> 10 (2019): 100251.</li> |
| + | <li>Matthias Fripp. [https://doi.org/10.1021/es204645c "Switch: A Planning Tool for Power Systems with Large Shares of Intermittent Renewable Energy."] <em>Environmental Science & Technology</em> 46, no. 11 (2012): 6371-6378.</li> |
| + | </ul> |
| + | <h5>United States and Canada</h5> |
| + | <h6>Full U.S.</h6> |
| + | <ul> |
| + | <li>Thuy Doan, Matthias Fripp and Michael Roberts. [https://thuyttdoan.com/publication/wip_gas_pipeline/ "Are We Building Too Much Natural Gas Pipeline? A comparison of actual US expansion of pipeline to an optimized model of the interstate network."] (2022).</li> |
| + | </ul> |
| + | <h6>Western North America</h6> |
| + | <ul> |
| + | <li>James Nelson, Josiah Johnston, Ana Mileva, Matthias Fripp, Ian Hoffman, Autumn Petros-Good, Christian Blanco and Daniel M. Kammen. [https://doi.org/10.1016/j.enpol.2012.01.031 "High-resolution modeling of the western North American power system demonstrates low-cost and low-carbon futures."] <em>Energy Policy</em> 43 (2012): 436-447.</li> |
| + | <li>James H. Nelson. [https://www.proquest.com/openview/87e4209361019cbb93bd58f7b4d577fe/1 "Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America Using the SWITCH Electric Power Sector Planning Model."] Ph.D. dissertation,, University of California, Berkeley (2013).</li> |
| + | <li>Ana Mileva, James H. Nelson, Josiah Johnston and Daniel M. Kammen. [https://doi.org/10.1021/es401898f "SunShot solar power reduces costs and uncertainty in future low-carbon electricity systems."] <em>Environmental Science & Technology</em> 47, no. 16 (2013): 9053-9060.</li> |
| + | <li>James Nelson, Ana Mileva, Josiah Johnston, Daniel Kammen, Max Wei and Jeffrey Greenblatt. [https://www.osti.gov/servlets/purl/1163655 "Scenarios for Deep Carbon Emission Reductions from Electricity by 2050 in Western North America using the SWITCH Electric Power Sector Planning Model: California’s Carbon Challenge Phase II Volume II."] Lawrence Berkeley National Laboratory (2014).</li> |
| + | <li>Ana Mileva. [https://www.proquest.com/openview/e11dff64108db028d29da3e1aa293b89/1 "Greenhouse gas emission reductions, system flexibility requirements, and drivers of storage deployment in the North American power system through 2050."] Ph.D. dissertation, University of California, Berkeley (2014).</li> |
| + | <li>Josiah Johnston. [https://www.proquest.com/openview/0a39e3cd025b0300a48da62420b29ee2/1 "Open and collaborative climate change mitigation planning for electric power grids."] Ph.D. dissertation, University of California, Berkeley (2015).</li> |
| + | <li>Daniel L. Sanchez, James H. Nelson, Josiah Johnston, Ana Mileva and Daniel M. Kammen. [https://doi.org/10.1038/nclimate2488 "Biomass enables the transition to a carbon-negative power system across western North America."] <em>Nature Climate Change</em> 5, no. 3 (2015): 230-234.</li> |
| + | <li>Daniel L. Sanchez. [https://escholarship.org/uc/item/0rs8n38z "Deployment, Design, and Commercialization of Carbon-Negative Energy Systems."] Ph.D. dissertation, University of California, Berkeley, 2015.</li> |
| + | <li>Ana Mileva, Josiah Johnston, James H. Nelson and Daniel M. Kammen. [https://doi.org/10.1016/j.apenergy.2015.10.180 "Power system balancing for deep decarbonization of the electricity sector."] <em>Applied Energy</em> 162 (2016): 1001-1009.</li> |
| + | <li>Patricia Hidalgo-Gonzalez. [https://www.proquest.com/openview/52ddd01f70958eeaaf63b3f9730688af/ "Learning and Control Systems for the Integration of Renewable Energy into Grids of the Future."] Ph.D. dissertation, University of California, Berkeley (2020).</li> |
| + | <li>Julia Szinai, David N. Yates, Patricia Hidalgo-Gonzalez, Daniel M. Kammen, Ranjit Deshmukh, and Andrew D. Jones. [https://ui.adsabs.harvard.edu/abs/2020AGUFMGC064..07S/abstract "Evaluating Climate Change Adaptation Strategies for Electricity and Water Systems in the Western US with a Cross-Sectoral Energy-Water Nexus Modeling Approach."] In <em>AGU Fall Meeting Abstracts</em>, vol. 2020: (2020) pp. GC064-07.</li> |
| + | <li>Julia Katalin Szinai. [https://www.proquest.com/openview/bad48e313f3c68e1f82b354616187f3d "Crossed wires: Cross-sectoral dynamics of planning climate-resilient electricity systems."] University of California, Berkeley, 2021.</li> |
| + | <li>Patricia L. Hidalgo-Gonzalez, Josiah Johnston and Daniel M. Kammen. [https://doi.org/10.1016/j.tej.2021.106925 "Cost and impact of weak medium term policies in the electricity system in Western North America."] <em>The Electricity Journal</em> 34, no. 3 (2021): 106925.</li> |
| + | <li>Rodrigo Marti Henriquez Auba. [https://digitalassets.lib.berkeley.edu/techreports/ucb/incoming/EECS-2022-264.pdf "Challenges on Decarbonization of Electric Power Systems."] (2022).</li> |
| + | <li>P.A. Sánchez-Pérez, Martin Staadecker, Julia Szinai, Sarah Kurtz and Patricia Hidalgo-Gonzalez. [https://doi.org/10.1016/j.apenergy.2022.119022 "Effect of modeled time horizon on quantifying the need for long-duration storage."] <em>Applied Energy</em> 317 (2022): 119022.</li> |
| + | <li>Natalia Gonzalez, Paul Serna-Torre, Pedro Sanchez-Perez, Ryan Davidson, Bryan Murray, Martin Staadecker, Julia Szinai, Rachel Wei, Daniel Kammen, Deborah Sunter and Patricia Hidalgo-Gonzalez. [https://doi.org/10.21203/rs.3.rs-3353442/v1 "Offshore Wind and Wave Energy Can Reduce Total Installed Capacity Required in Zero Emissions Grids."] (2023).</li> |
| + | </ul> |
| + | <h6>Texas</h6> |
| + | <ul> |
| + | <li>Joshua D. Rhodes, Thomas Deetjen and Caitlin Smith. [https://www.ideasmiths.net/wp-content/uploads/2022/02/LANCIUM_IS_ERCOT_flexDC_FINAL_2021.pdf "Impacts of Large, Flexible Data Center Operations on the Future of ERCOT."] Lancium White Paper. (2021).</li> |
| + | <li>Joshua D. Rhodes and Thomas Deetjen. [https://www.ideasmiths.net/wp-content/uploads/2021/07/APA_IS_ERCOT_grid_FINAL.pdf "Least-cost optimal expansion of the ERCOT grid."] IdeaSmiths LLC. (2021).</li> |
| + | <li>Sarah Emilee Dodamead.[https://repositories.lib.utexas.edu/handle/2152/118332 "Exploring the Trade-offs Between Battery Storage and Transmission for the Electrical Grid."] PhD diss., 2022.</li> |
| + | </ul> |
| + | <h6>California</h6> |
| + | <ul> |
| + | <li>Matthias Fripp [https://search.proquest.com/openview/615beec4b81f803b0332ac6182b0c5a3/1 "Optimal investment in wind and solar power in California."] Ph.D. dissertation, University of California, Berkeley (2008).</li> |
| + | <li>Max Wei, James H. Nelson, Michael K. Ting, Christopher Yang, Jeffery B. Greenblatt, James E. McMahon, Daniel M. Kammen, Christopher M. Jones, Ana Mileva, Josiah Johnston and Ranjit Bharvirkar. [https://eta.lbl.gov/publications/california-s-carbon-challenge-0 "California’s Carbon Challenge: Scenarios for Achieving 80% Emissions Reduction in 2050."] Lawrence Berkeley National Laboratory (2012).</li> |
| + | <li>Max Wei, James H. Nelson, Jeffery B. Greenblatt, Ana Mileva, Josiah Johnston, Michael Ting, Christopher Yang, Chris Jones, James E McMahon and Daniel M Kammen. [https://doi.org/10.1088/1748-9326/8/1/014038 "Deep carbon reductions in California require electrification and integration across economic sectors."] <em>Environmental Research Letters</em> 8, no. 1 (2013): 014038.</li> |
| + | <li>Daniel M. Kammen, Blas L. Pérez Henrıquez and Josiah Johnston. [https://books.google.com/books?hl=en&lr=&id=fWEKBAAAQBAJ&oi=fnd&pg=PA175&dq=info:a3ke3QRGWMsJ:scholar.google.com&ots=bO0uZOvn7V&sig=h0F8DsLso1IrWL5EJ69I7RKtrFA#v=onepage&q&f=false "California’s climate policy and the development of clean energy systems institutional foundations."] Carbon governance, climate change and business transformation (2014): 175-187.</li> |
| + | <li>Max Wei, Jeffrey Greenblatt, Sally Donovan, James Nelson, Ana Mileva, Josiah Johnston and Daniel Kammen. [https://escholarship.org/uc/item/8gr134wb "Scenarios for Meeting California's 2050 Climate Goals: California's Carbon Challenge Phase II Volume I: Non-Electricity Sectors and Overall Scenario Results."] Lawrence Berkeley National Laboratory report no. LBNL-6743E (2014).</li> |
| + | <li>Geoff Morrison, Sonia Yeh, Anthony R Eggert, Christopher Yang, James Nelson, Jeffery Greenblatt, Raphael Isaac, Mark Z Jacobson, Josiah Johnston, Daniel M Kammen, Ana Mileva, Jack Moore, David Roland-Holst, Max Wei, John Weyant, James Williams, Ray Williams and Christina Zapata. [https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=9b9d431ffd63f753b8ae7612b0a1cc9e4c0d77b4 "Long-term Energy Planning In California: Insights and Future Modeling Needs."] U.C. Davis Inst. of Transportation Studies report no. UCD-ITS-RR-14-08 (2014).</li> |
| + | <li>Geoffrey M. Morrison, Sonia Yeh, Anthony R. Eggert, Christopher Yang, James H. Nelson, Jeffery B. Greenblatt, Raphael Isaac, Mark Z. Jacobson, Josiah Johnston, Daniel M. Kammen, Ana Mileva, Jack Moore, David Roland-Holst, Max Wei, John P. Weyant, James H. Williams, Ray Williams and Christina B. Zapata. [https://doi.org/10.1007/s10584-015-1403-5 "Comparison of low-carbon pathways for California."] <em>Climatic Change</em> 131 (2015): 545-557</li> |
| + | <li>Max Wei, Shuba V. Raghavan and Patricia Hidalgo-Gonzalez. [https://www.energy.ca.gov/publications/2019/building-healthier-and-more-robust-future-2050-low-carbon-energy-scenarios "Building a Healthier and More Robust Future: 2050 Low-Carbon Energy Scenarios for California."] California Energy Commission report no. CEC-500-2019-033 (2019).</li> |
| + | <li>P. A. Sanchez-Perez, Sarah Kurtz, Natalia Gonzalez, Martin Staadecker and Patricia Hidalgo-Gonzalez. [https://doi.org/10.1109/EESAT55007.2022.9998031 "Effect of Time Resolution on Capacity Expansion Modeling to Quantify Value of Long-Duration Energy Storage."] <em>2022 IEEE Electrical Energy Storage Application and Technologies Conference (EESAT)</em> (2022).</li> |
| + | </ul> |
| + | <h6>Hawaii</h6> |
| + | <ul> |
| + | <li>Matthias Fripp. [https://uhero.hawaii.edu/wp-content/uploads/2019/08/WP_2016-1.pdf "Making an Optimal Plan for 100% Renewable Power in Hawai‘i - Preliminary Results from the SWITCH Power System Planning Model."] UHERO Working Paper No. 2016-1 (2016).</li> |
| + | <li>Matthias Fripp. [https://uhero.hawaii.edu/wp-content/uploads/2019/08/WP_2017-3.pdf "Effect of Electric Vehicles on Design, Operation and Cost of a 100% Renewable Power System."] UHERO Working Paper No. 2017-3 (2017).</li> |
| + | <li>Imelda, Matthias Fripp and Michael J. Roberts. [https://www.nber.org/papers/w24712 "Variable pricing and the cost of renewable energy."] No. w24712. National Bureau of Economic Research, 2018.</li> |
| + | <li>Matthias Fripp. [https://doi.org/10.1186/s13705-018-0184-x "Intercomparison between Switch 2.0 and GE MAPS models for simulation of high-renewable power systems in Hawaii."] (2018).</li> |
| + | <li>John Larsen, Shashank Mohan, Whitney Herndon, Peter Marsters, and Hannah Pitt. [https://rhg.com/wp-content/uploads/2018/04/rhodium_transcendingoil_final_report_4-18-2018-final.pdf "Transcending Oil: Hawaii’s Path to a Clean Energy Economy."] Rhodium Group (2018).</li> |
| + | </ul> |
| + | <h5>Latin America</h5> |
| + | <h6>Chile</h6> |
| + | <ul> |
| + | <li>Juan Pablo Carvallo, Patricia Hidalgo-González and Daniel M Kammen. [https://www.nrdc.org/sites/default/files/envisioning-sustainable-chile-report-sp.pdf "Imaginando un Chile sustentable."] Natural Resources Defense Council (NRDC), 2014.</li> |
| + | <li>Juan Pablo Carvallo, Patricia Hidalgo-González and Daniel M Kammen. [https://www.nrdc.org/sites/default/files/envisioning-sustainable-chile-report.pdf "Envisioning a sustainable Chile: Five findings about the future of the Chilean electricity and energy system."] Natural Resources Defense Council (NRDC), 2014.</li> |
| + | <li>Daniel M. Kammen, Rebekah Shirley, Juan Pablo Carvallo and Diego Ponce de Leon Barido.[https://clas.berkeley.edu/sites/default/files/publications/brlasspring2014-kammenetal.pdf "Switching to Sustainability."] U.C. Berkeley Center for Latin American Studies (2014).</li> |
| + | <li>Benjamín Maluenda Philippi. [https://doi.org/10.7764/tesisUC/ING/21412 "Expansion planning under long-term uncertainty for hydrothermal systems with volatile resources."] (2017).</li> |
| + | <li>Benjamín Maluenda Philippi, Matias Negrete-Pincetic, Daniel E. Olivares, and Álvaro Lorca. [https://doi.org/10.1016/j.ijepes.2018.06.008 "Expansion planning under uncertainty for hydrothermal systems with variable resources."] <em>International Journal of Electrical Power & Energy Systems</em> 103 (2018): 644-651.</li> |
| + | <li>Felipe Verástegui, Álvaro Lorca, Matias Negrete-Pincetic and Daniel Olivares. [https://doi.org/10.1016/j.enpol.2020.111702 "Firewood heat electrification impacts in the Chilean power system."] <em>Energy Policy</em> 144 (2020): 111702.</li> |
| + | <li>Felipe Verástegui, Álvaro Lorca, Daniel Olivares and Matias Negrete-Pincetic. [https://doi.org/10.1016/j.energy.2021.121242 "Optimization-based analysis of decarbonization pathways and flexibility requirements in highly renewable power systems."] <em>Energy</em> 234 (2021): 121242.</li> |
| + | <li>José Miguel Valdes, Álvaro Lorca, Cristian Salas, Francisco Pinto, Rocío Herrera, Alejandro Bañados, Raúl Urtubia, Patricio Castillo, Lucas Maulén and Diego González. [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4481537 "Greenhouse Gas Mitigation Beyond the Nationally Determined Contributions in Chile: An Assessment of Alternatives."] <em>SSRN Electronic Journal</em> (2023).</li> |
| + | </ul> |
| + | <h6>Mexico</h6> |
| + | <ul> |
| + | <li>Sergio Castellanos, Pedro Sanchez-Perez, Aldo Pasos-Trejo, Mateo Torres, Josiah Johnston, Apollo Jain, Alejandra Monroy, Florin James-Langer, Diego Ponce de Leon, Oliver Probst and Daniel M. Kammen. [https://doi.org/10.1109/PVSC.2018.8548261 "Modeling high-penetration of clean energy in the electrical grid: A case for Mexico."] <em>2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)</em> (2018).</li> |
| + | <li>Sergio Castellanos, Apollo Jain, James Adam Mahady and Daniel M. Kammen. [https://ui.adsabs.harvard.edu/abs/2019AGUFMGC31O1295C/abstract "Vehicle Electrification in Mexico: Evaluating Long-Term Grid Capacity Planning and Interplay with Renewable Deployment."] In AGU Fall Meeting Abstracts, vol. 2019, pp. GC31O-1295. 2019.</li> |
| + | </ul> |
| + | <h6>Nicaragua</h6> |
| + | <ul> |
| + | <li>Diego Ponce de Leon Barido, Josiah Johnston, Maria V Moncada, Duncan Callaway and Daniel M Kammen. [http://dx.doi.org/10.1088/1748-9326/10/10/104002 "Evidence and future scenarios of a low-carbon energy transition in Central America: a case study in Nicaragua."] <em>Environmental Research Letters</em> 10, no. 10 (2015): 104002.</li> |
| + | </ul> |
| + | <h5>China</h5> |
| + | <ul> |
| + | <li>Gang He, Anne-Perrine Avrin, James Nelson, Jianwei Tian, Josiah Johnston, Ana Mileva and Daniel Kammen. [https://www.iaee.org/proceedings/article/8118 "China’s Ability to Achieve National Energy Objectives Depends on Coordination of Infrastructure and Policy Initiatives."] 37th IAEE International Conference on Energy & the Economy (2014).</li> |
| + | <li>Gang He. [https://www.proquest.com/openview/61b3c7808fcb8c90624160ab4dfb5d46/1 "Decarbonizing China's Power Sector: Potential, Prospects and Policy."] Ph.D. dissertation, University of California, Berkeley (2015).</li> |
| + | <li>Gang He, Anne-Perrine Avrin, James H. Nelson, Josiah Johnston, Ana Mileva, Jianwei Tian, and Daniel M. Kammen. [https://doi.org/10.1021/acs.est.6b01345 "SWITCH-China: A Systems Approach to Decarbonizing China’s Power System."] Environmental Science & Technology 50, no. 11 (2016): 5467-5473.</li> |
| + | <li>Anne-Perrine Avrin, Scott J. Moura and Daniel M. Kammen. [https://doi.org/10.1109/APPEEC.2016.7779459 "Minimizing cost uncertainty with a new methodology for use in policy making: China's electricity pathways."] <em>2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)</em> (2016).</li> |
| + | <li>Anne-Perrine Avrin [https://search.proquest.com/openview/bfe875ed2b6934329657ccf46bba00c4/1 "China's Power Sector Decarbonization: Modeling Emission Reduction Potential, Technical Feasibility and Cost Efficiency of Inter-sectoral Approaches."] Ph.D. dissertation, University of California, Berkeley (2018).</li> |
| + | <li>Gang He, Jiang Lin, Froylan Sifuentes, Xu Liu, Nikit Abhyankar and Amol Phadke. [https://eta-publications.lbl.gov/sites/default/files/rapid_cost_decrease_of_renewable_energy_and_storage_offers_an_opportunity_to_accelerate_the_decarbonization_of_chinas_power_system_lbnl-2001357.pdf "Rapid cost decrease of renewable energy and storage offers an opportunity to accelerate the decarbonization of China’s power system."] Lawrence Berkeley National Laboratory (2020).</li> |
| + | <li>Gang He, Jiang Lin, Froylan Sifuentes, Xu Liu, Nikit Abhyankar, and Amol Phadke. [https://doi.org/10.1038/s41467-020-16184-x "Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system."] <em>Nature Communications</em> 11, no. 1 (2020): 2486.</li> |
| + | <li>Gang He, Jiang Lin, Froylan Sifuentes, Xu Liu, Nikit Abhyankar and Amol Phadke. [https://doi.org/10.1038/s41467-020-16184-x "Rapid cost decrease of renewables and storage accelerates the decarbonization of China’s power system."] <em>Nature Communications</em> 11, no. 1 (2020).</li> |
| + | <li>Bo Li, Ziming Ma, Gang He, Patricia Hidalgo-Gonzalez, Natalie Fedorova, Minyou Chen and Daniel M. Kammen. [https://dx.doi.org/10.2139/ssrn.3699159 "Offshore Wind Replaces Coal and Reduces Transmission, Enabling China to Meet the 1.5°C Climate Imperative."] <em>SSRN Electronic Journal</em> (2020).</li> |
| + | <li>Bo Li, Ziming Ma, Patricia Hidalgo-Gonzalez, Alex Lathem, Natalie Fedorova, Gang He, Haiwang Zhong, Minyou Chen and Daniel M. Kammen. [https://doi.org/10.1016/j.enpol.2020.111962 "Modeling the impact of EVs in the Chinese power system: Pathways for implementing emissions reduction commitments in the power and transportation sectors."] <em>Energy Policy</em> 149 (2021): 111962.</li> |
| + | <li>Guangzhi Yin, Bo Li, Natalie Fedorova, Patricia Hidalgo-Gonzalez, Daniel M. Kammen and Maosheng Duan. [https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3767160 "Accelerating China’s Fossil Fuel Plant Retirement and Renewable Energy Expansion via Capacity Mechanism."] <em>SSRN Electronic Journal</em> (2021).</li> |
| + | <li>Guangzhi Yin, Bo Li, Natalie Fedorova, Patricia Hidalgo-Gonzalez, Daniel M. Kammen and Maosheng Duan. [https://doi.org/10.1016/j.isci.2021.103287 "Orderly retire China's coal-fired power capacity via capacity payments to support renewable energy expansion."] <em>iScience</em> 24, no. 11 (2021): 103287.</li> |
| + | <li>Chao Zhang, Gang He, Josiah Johnston and Lijin Zhong. [https://doi.org/10.1016/j.jclepro.2021.129765 "Long-term transition of China's power sector under carbon neutrality target and water withdrawal constraint."] <em>Journal of Cleaner Production</em> 329 (2021): 129765.</li> |
| + | <li>Xiaoli Zhang, Xueqin Cui, Bo Li, Patricia Hidalgo-Gonzalez, Daniel M Kammen, Ji Zou and Ke Wang. [https://doi.org/10.1016/j.apenergy.2021.118401 "Immediate actions on coal phaseout enable a just low-carbon transition in China’s power sector."] <em>Applied Energy</em> 308 (2022): 118401.</li> |
| + | <li>Jiang Lin, Nikit Abhyankar, Gang He, Xu Liu and Shengfei Yin. [https://doi.org/10.1016/j.isci.2022.103749 "Large balancing areas and dispersed renewable investment enhances grid flexibility in a renewable-dominant power system in China."] <em>iScience</em> 25, no. 2 (2022): 103749.</li> |
| + | <li>Liqun Peng, Denise L. Mauzerall, Yaofeng D. Zhong and Gang He. [https://doi.org/10.1038/s41467-023-40337-3 "Heterogeneous effects of battery storage deployment strategies on decarbonization of provincial power systems in China."] <em>Nature Communications</em> 14, no. 1 (2023).</li> |
| + | </ul> |
| + | <h5>Japan</h5> |
| + | <ul> |
| + | <li>Tatsuya Wakeyama. [http://sw.pg2.at/abstracts/a0106.html "Impact of Increasing Share of Renewables on the Japanese Electricity System - Model Based Analysis."] Energynautics GmbH, Brussels (2015).</li> |
| + | <li>Rena Kuwahata, Peter Merk, Tatsuya Wakeyama, Dimitri Pescia, Steffen Rabe and Shota Ichimura. [https://doi.org/10.1049/iet-rpg.2019.0711 "Renewables integration grid study for the 2030 Japanese power system."] <em>IET Renewable Power Generation</em> 14, no. 8 (2020): 1249-1258.</li> |
| + | </ul> |
| + | <h5>Laos</h5> |
| + | <ul> |
| + | <li>Nkiruka Avila, Noah Kittner, Rebekah Shirley, Michael B. Dwyer, David Roberts, Jalel Sager and Daniel M. Kammen. [https://orbi.uliege.be/bitstream/2268/255697/1/2020%20Resource%20Governance_LMPPI_Tinh_Minh%20%281%29.pdf "Beyond the Battery: Power Expansion Alternatives for Economic Resilience and Diversity in Laos."] <em>Resource Governance, Agriculture and Sustainable Livelihoods in the Lower Mekong Basin</em> (2019): 27-65.</li> |
| + | <li>Aaditee Kudrimoti, Alex Lathem, Rachel Ng and Ashley Yip. [https://researchmap.jp/danidelbarrioalvarez/academic_contribution/30436560/attachment_file.pdf "SWITCH-Laos: Power Systems Investment Planning for Economic Resilience in Laos."] 14th GMSARN</li> |
| + | <li>International Conference (2019).</li> |
| + | </ul> |
| + | <h5>India</h5> |
| + | <ul> |
| + | <li>Chao Zhang, Joonseok Yang, Johannes Urpelainen, Puneet Chitkara, Jiayi Zhang and Jiao Wang. [https://doi.org/10.1021/acs.est.0c08724 "Thermoelectric Power Generation and Water Stress in India: A Spatial and Temporal Analysis."] <em>Environmental Science & Technology</em> 55, no. 8 (2021): 4314-4323.</li> |
| + | </ul> |
| + | <h5>Kenya</h5> |
| + | <ul> |
| + | <li>Daniel Kammen and Brooke Maushund. [https://rael.berkeley.edu/wp-content/uploads/2017/03/ARF-2017-OUTCOMES.pdf "Renewable Electrification and Integration Implementation Strategies."] in The Path 2021: Outcomes of the Africa Renewable Energy Forum (2016).</li> |
| + | <li>Juan-Pablo Carvallo, Brittany J. Shaw, Nkiruka I. Avila and Daniel M. Kammen. [https://doi.org/10.1021/acs.est.7b00345 "Sustainable Low-Carbon Expansion for the Power Sector of an Emerging Economy: The Case of Kenya."] <em>Environmental Science & Technology</em> 51 no. 17 (2017): 10232–10242.</li> |
| + | <li>Juan Pablo Carvallo. [https://escholarship.org/uc/item/2qh8d0ng "Strategic Planning for Universal Electricity Access."] Ph.D. dissertation, University of California, Berkeley (2019).</li> |
| + | <li>Juan-Pablo Carvallo, Jay Taneja, Duncan Callaway and Daniel M. Kammen. [https://doi.org/10.1109/JPROC.2019.2925759 "Distributed Resources Shift Paradigms on Power System Design, Planning, and Operation: An Application of the GAP Model."] <em>Proceedings of the IEEE</em> 107, no. 9 (2019): 1906-1922.</li> |
| + | <li>Juan Pablo Carvallo, Nan Zhang, Sean P. Murphy, Benjamin D. Leibowicz and Peter H. Larsen. [https://doi.org/10.1016/j.apenergy.2020.115071 "The economic value of a centralized approach to distributed resource investment and operation."] <em>Applied Energy</em> 269 (2020): 115071.</li> |
| + | </ul> |
| + | <h5>Spain</h5> |
| + | <ul> |
| + | <li>Gustavo Gomes Pereira. [https://upcommons.upc.edu/handle/2117/332163 "Power System Modelling: A techno-economic analysis of the island of Menorca, Spain."]. Master's thesis, Universitat Politècnica de Catalunya (2020).</li> |
| + | </ul> |
| + | |example_research_questions=identify least-cost combination of resources to reach 100% renewable power; calculate cost of achieving various renewable or carbon targets; select assets to minimize cost for a microgrid, possibly interacting with outside electricity supplier; calculate effect of price-responsive demand on consumer welfare while adopting renewable power |
| + | |Comment on model validation=where technical detail is important, users should configure switch to reflect local operating rules and validate results against existing practices; Switch has also been validated against GE-MAPS in a Hawaii case study in production-cost mode (https://doi.org/10.1186/s13705-018-0184-x) |
| + | |Specific properties=using selected samples of full days enables direct modeling of curtailment, storage, hydro and demand response in a multi-decade model; highly modular platform enables easy and structured customization for specific studies |
| |Model input file format=No | | |Model input file format=No |
| |Model file format=No | | |Model file format=No |
| |Model output file format=No | | |Model output file format=No |
| }} | | }} |
J. Johnston, R. Henríquez, B. Maluenda and M. Fripp “Switch 2.0: a modern platform for planning high-renewable power systems,” Preprint, 2018. https://arxiv.org/abs/1804.05481
identify least-cost combination of resources to reach 100% renewable power; calculate cost of achieving various renewable or carbon targets; select assets to minimize cost for a microgrid, possibly interacting with outside electricity supplier; calculate effect of price-responsive demand on consumer welfare while adopting renewable power