Showing 25 pages using this property.
A | |
ASAM + | Glismann (2021), “ Ancillary Services Acquisition Model: considering market interactions in policy design”, preprint Applied Energy Journal. https://arxiv.org/abs/2104.13047 |
ASSUME + | Zenodo |
Antares-Simulator + | A New tool for adequacy reporting of electric systems. CIGRE 2008, C1-305 (M. Doquet, R. Gonzalez, S. Lepy, E. Momot, F. Verrier) |
AnyMOD + | Göke (2020), AnyMOD - A graph-based framework for energy system modelling with high levels of renewables and sector integration, Working Paper. |
B | |
Backbone + | Helistö, N.; Kiviluoma, J.; Ikäheimo, J.; Rasku, T.; Rinne, E.; O’Dwyer, C.; Li, R.; Flynn, D. Backbone—An Adaptable Energy Systems Modelling Framework. Energies 2019, 12, 3388. |
Balmorel + | Wiese, Frauke, Rasmus Bramstoft, Hardi Koduvere, Amalia Rosa Pizarro Alonso, Olexandr Balyk, Jon Gustav Kirkerud, Åsa Grytli Tveten, Torjus Folsland Bolkesjø, Marie Münster, and Hans V. Ravn. “Balmorel Open Source Energy System Model.” Energy Strategy Reviews 20 (2018): 26–34. |
Breakthrough Energy Model + | Y. Xu et al., "U.S. Test System with High Spatial and Temporal Resolution for Renewable Integration Studies," 2020 IEEE Power & Energy Society General Meeting (PESGM), 2020, pp. 1-5. |
C | |
CAPOW + | Su, Y., Kern, J., Denaro, S., Hill, J., Reed, P., Sun, Y., Cohen, J., Characklis, G. (2020). “An open source model for quantifying risks in bulk electric power systems from spatially and temporally correlated hydrometeorological processes” Environmental Modelling and Software. Vol. 126 |
CESAR-P + | Leonie Fierz, Urban Energy Systems Lab, Empa. (2021, July 30). hues-platform/cesar-p-core: CESAR-P-V2.0.1 (CESAR-P-V2.0.1). Zenodo. https://doi.org/10.5281/zenodo.5148531 |
Calliope + | Pfenninger and Pickering, (2018). Calliope: a multi-scale energy systems modelling framework. Journal of Open Source Software, 3(29), 825 |
CapacityExpansion + | https://joss.theoj.org/papers/10.21105/joss.02034# |
D | |
DESSTinEE + | T. Bossmann and I. Staffell, 2016. The shape of future electricity demand: Exploring load curves in 2050s Germany and Britain. Energy, 90(20), 1317–1333. |
DIETER + | Zerrahn, A., Schill, W.-P. (2017): Long-run power storage requirements for high shares of renewables: review and a new model. Renewable and Sustainable Energy Reviews 79, 1518-1534 |
Demod + | Barsanti, M., Schwarz, J.S., Gérard Constantin, L.G. et al. Socio-technical modeling of smart energy systems: a co-simulation design for domestic energy demand. Energy Inform 4, 12 (2021). |
Dispa-SET + | Quoilin, S., Hidalgo Gonzalez, I., & Zucker, A. (2017). Modelling Future EU Power Systems Under High Shares of Renewables: The Dispa-SET 2.1 open-source model. Publications Office of the European Union. |
DynPP + | Modelling and simulation of a coal-fired power plant for start-up optimisation |
E | |
ELTRAMOD + | Demand Side Management in Deutschland zur Systemintegration erneuerbarer Energien |
EMLab-Generation + | Richstein et al. 2014, Cross-border electricity market effects due to price caps in an emission trading system: An agent-based approach, Energy Policy Volume 71, August 2014, Pages 139–158 |
EOLES elec + | Shirizadeh, B. & Quirion, P. (2020). Low-carbon options for French power sector: What role for renewables, nuclear energy and carbon capture and storage? Energy Economics, 105004. |
EOLES elecRES + | Shirizadeh, B., Perrier, Q. & Quirion, P. (2022) How sensitive are optimal fully renewable systems to technology cost uncertainty? The Energy Journal, Vol 43, No. 1 |
ESO-X + | Heuberger CF, Rubin ES, Staffell I, Shah N, Mac Dowell Nclose, 2017, Power capacity expansion planning considering endogenous technology cost learning, APPLIED ENERGY, Vol: 204, Pages: 831-845, ISSN: 0306-2619 |
Energy Transition Model + | https://github.com/quintel/documentation |
EnergyScope + | Limpens G, Moret S, Jeanmart H, Maréchal F,EnergyScope TD: a novel open-source model for regional energy systems. Appl Energy 2019; Volume 255. |
F | |
FlexiGIS + | GIS-based urban energy systems models and tools: Introducing a model for the optimisation of flexibilisation technologies in urban areas |
G | |
GAMAMOD + | Hauser, Philipp (2019) : A modelling approach for the German gas gridusing highly resolved spatial, temporal and sectoral data (GAMAMOD-DE), ZBW – LeibnizInformation Centre for Economics, Kiel, Hamburg |